
CNT 4714: JSPs Part 1 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2010

Introduction to JavaServer Pages (JSP) – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/spr2010

CNT 4714: JSPs Part 1 Page 2 Mark Llewellyn ©

Introduction to JavaServer Pages (JSP)

• JavaServer Pages (JSP) is an extension of servlet technology.

• Like servlets, JSPs simplify the delivery of dynamic web

content. They allow web programmers to create dynamic

content by reusing predefined components and by interacting

with components using server-side scripting.

• JSPs can reuse JavaBeans and create custom tag libraries that

encapsulate complex, dynamic functionality.

• JSP classes and interfaces can be found in packages

javax.servlet.jsp and javax.servlet.jsp.tagext.

CNT 4714: JSPs Part 1 Page 3 Mark Llewellyn ©

Introduction to JSP (cont.)

• There are four key components to JSPs

1. Directives: messages to the JSP container (server component

executing the JSP) that enable the programmer to specify page

settings, include content from other resources and specify custom tag

libraries to use in a JSP.

2. Actions: encapsulate functionality based on the information sent to

the server as part of a specific client request. They can also create

Java objects for use in JSP scriplets.

3. Scripting elements: enable the programmer to insert Java code that

interacts with components in a JSP to perform request processing.

4. Tag libraries: are part of the tag extension mechanism that enables

programmers to create custom tags. Typically, most useful for web

page designers with little knowledge of Java.

CNT 4714: JSPs Part 1 Page 4 Mark Llewellyn ©

Introduction to JSP (cont.)

• In some ways, JSPs look like standard XHTML or XML

documents.

• JSPs normally include XHTML or XML markup. Such

markup is known as fixed-template data or fixed-template

text.

– Fixed-template data/text often helps a programmer decide whether to

use a servlet or a JSP. Recall that JSPs are most often used when

most of the content sent to the client is fixed-template data and little

or none of the content is generated dynamically with Java code.

Servlets are more commonly used when only a small amount of the

content returned to the client is fixed-template data.

CNT 4714: JSPs Part 1 Page 5 Mark Llewellyn ©

Introduction to JSP (cont.)

• When a JSP-enabled server receives the first request for a JSP, the JSP
container translates the JSP into a Java servlet that handles the current
request as well as all future requests to the JSP.

• Literal text in the JSP becomes string literals in the servlet that represents
the translated JSP.

• Any errors that occur in compiling the new servlet result in translation-
time errors.

• The JSP container places the Java statements that implement the JSP’s
response in method _jspService at translation time.

• If the new servlet compiles properly, the JSP container invokes method
_jspService to process the request.

• The JSP may respond directly or may invoke other web application
components to assist in processing the request. Any errors that occur
during request processing are known as request-time errors.

CNT 4714: JSPs Part 1 Page 6 Mark Llewellyn ©

Introduction to JSP (cont.)

• Overall, the request-response mechanism and the JSP life-

cycle are the same as those of a servlet.

• JSPs can override methods jspInit and jspDestroy

(similar to servlet methods init and destroy), which the

JSP container invokes when initializing and terminating a

JSP.

• A JSP programmer defines these methods using JSP

declarations which are part of the scripting mechanism.

CNT 4714: JSPs Part 1 Page 7 Mark Llewellyn ©

The First JSP Example

• Our first look at a JSP is with a simple clock JSP which

displays the current date and time inserted into a web page

using a JSP expression.

• To execute this clock.jsp from your own system, as

with the servlet examples we’ve been running – copy the

clock.jsp file into the webapps subdirectory you created for

your servlet examples.

– My Tomcat webapps subdirectory is named CNT4714 and I created a

subdirectory named JSP in this directory to hold all the JSP examples.

From the index page I created – the JSPs can be executed directly,

otherwise…type http://localhost:8080/CNT4714/jsp/clock.jsp to

execute this JSP.

http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp
http://localhost:8080/cop4610/jsp/clock.jsp

CNT 4714: JSPs Part 1 Page 8 Mark Llewellyn ©

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- A clock.jsp -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv = "refresh" content = "60" />

<title>An Initial JSP Example</title>

<style type = "text/css">

.big { font-family: helvetica, arial, sans-serif;

font-weight: bold;

font-size: 2em; }

</style>

</head>

<body>

<p class = "big">A Clock JSP</p>

<table style = "border: 6px outset;">

<tr>

<td style = "background-color: black;">

<p class = "big" style = "color: cyan;">

<!-- JSP expression to insert date/time -->

<%= new java.util.Date() %>

</p>

</td>

</tr>

</table>

</body>

</html>

JSP expressions are delimited by

<%= … %.

Creates a new instance of class Date (package java.util).

When the client requests this JSP, this expression inserts the

String representation of the date and time in the response to

the client.

XHTML meta-element

sets a refresh interval

of 60 seconds

CNT 4714: JSPs Part 1 Page 9 Mark Llewellyn ©

CNT 4714: JSPs Part 1 Page 10 Mark Llewellyn ©

Implicit Objects

• Implicit objects provide access to many servlet capabilities in

the context of a JSP.

• Implicit objects have four scopes:

1. Application: the JSP container owns objects with application scope.

Any JSP can manipulate such objects.

2. Page: objects with page scope can only be manipulated in the page

that defines them. Each page has its own instances of the page-scope

implicit objects.

3. Request: these objects go out of scope when request processing

completes with a response to the client.

4. Session: these objects exist for the client’s entire browsing session.

CNT 4714: JSPs Part 1 Page 11 Mark Llewellyn ©

Implicit Objects
Implicit Object Description

Application Scope

application This javax.servlet.ServletContext object represents the

container in which the JSP executes.

Page Scope

config This javax.servlet.ServletConfig object represents the

JSP configuration options. As with servlets, configuration options can

be specified in a Web application descriptor.

exception This java.lang.Throwable object represents the exception that

is passed to the JSP error page. This object is available only in a JSP

error page.

out This javax.servlet.jsp.JspWriter object writes text as part

of the response to a request. This object is used implicitly with JSP

expressions and actions that insert string content in a response.

page This java.lang.Object object represents the this reference for

the current JSP instance.

pageContext
This javax.servlet.jsp.PageContext object hides the implementation details of the

Underlying servlet and JSP container and provides JSP programmers with

Access to the implicit objects listed in this table.

CNT 4714: JSPs Part 1 Page 12 Mark Llewellyn ©

Implicit Objects

Implicit Object Description
response This object represents the response to the client. The object normally

is an instance of a class that implements HttpServletResponse

(package javax.servlet.http). If a protocol other than HTTP is

used, this object is an instance of a class that implements

javax.servlet.ServletResponse .

Request Scope

request This object represents the client request. The object normally is an

instance of a class that implements HttpServletRequest

(package javax.servlet.http). If a protocol other than HTTP is

used, this object is an instance of a subclass of

javax.servlet.ServletRequest.

Session Scope

session This javax.servlet.http.HttpSession object represents

the client session information if such a session has been created. This

object is available only in pages that participate in a session.

.

CNT 4714: JSPs Part 1 Page 13 Mark Llewellyn ©

Scripting

• JSPs often present dynamically generated content as part of

an XHTML document that is sent to the client in response to

a request.

• In some cases, the content is static, but is output only if

certain conditions are met during a request (e.g., providing

values in a form that submits a request).

• JSP programmers can insert Java code and logic in a JSP

using scripting.

CNT 4714: JSPs Part 1 Page 14 Mark Llewellyn ©

Scripting Components
• JSP scripting components include scriplets, comments, expressions,

declarations, and escape sequences.

• Scriplets are blocks of code delimited by <% and %>. They contain Java
statements that the container places in method _jspService at
translation time.

• Comments come in three flavors in JSPs: JSP comments, XHTML
comments, and scripting language comments.

– JSP comments are delimited by <%-- and --%>. Can be placed throughout
the JSP except inside scriplets.

– XHTML comments are delimited by <!-- and -->. Can be placed anywhere
in the JSP except inside scriplets.

– Scripting language comments are Java comments (Java is currently the only
JSP scripting language which is allowed). Scriplets can use either // or /* and
*/ as in normal Java.

CNT 4714: JSPs Part 1 Page 15 Mark Llewellyn ©

Scripting Components (cont.)

• JSP comments and scripting language comments are ignored

and do not appear in the response to a client. When clients

view the source code of a JSP response, they will see only

the XHTML comments in the source code.

– The different comment styles are useful for separating comments that

the user should be able to see from those that document logic

processed on the server-side.

• Expressions are delimited by <%= and %> and contain a

Java expression that is evaluated when a client requests the

JSP containing the expression. The container converts the

result of a JSP expression to a String object, then outputs

the String as part of the response to the client.

CNT 4714: JSPs Part 1 Page 16 Mark Llewellyn ©

Scripting Components (cont.)

• Declarations are delimited by <%! and %>. Declarations
enable the JSP programmer to define variables and methods
for use in a JSP. Variables become instance variables of the
servlet class that represents the translated JSP. Similarly,
methods become members of the class that represents the
translated JSP. Declaration of variables and methods in a
JSP use Java syntax such as:

<%! int increment = 0; %>

• Escape sequences are necessary to include special characters
or character sequences that the JSP container normally uses
to delimit JSP code.

– Example: literal: <%, escape sequence is: <\%

CNT 4714: JSPs Part 1 Page 17 Mark Llewellyn ©

Scripting Example – welcome.jsp
<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- welcome.jsp -->

<!-- JSP that processes a "get" request containing data. -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<!-- head section of document -->

<head>

<title>A JSP that processes "get" requests with data</title>

</head>

<!-- body section of document -->

<body>

<% // begin scriptlet

String name = request.getParameter("firstName");

if (name != null)

{

%> <%-- end scriptlet to insert fixed template data --%>

XHTML comments shown

in blue.

Scriplets shown in green.

CNT 4714: JSPs Part 1 Page 18 Mark Llewellyn ©

<h1>

Hello <%= name %>,

Welcome to JavaServer Pages Technology!

</h1>

<% // continue scriptlet

} // end if

else {

%> <%-- end scriptlet to insert fixed template data --%>

<form action = "welcome.jsp" method = "get">

<p>Type your first name and press Submit</p>

<p><input type = "text" name = "firstName" />

<input type = "submit" value = "Submit" />

</p>

</form>

<% // continue scriptlet

} // end else

%> <%-- end scriptlet --%>

</body>

</html> <!-- end XHTML document -->

CNT 4714: JSPs Part 1 Page 19 Mark Llewellyn ©

Original

page

Execution of

JSP

